Vector product of two vectors $2\hat i\, + \,\hat j\,$ and $\hat i\, + \,2\hat j\,$ is
$\hat k\, + \,\hat j\,$
$\hat i\, + \,\hat j\,$
$3\hat k$
$2\hat i$
Three vectors $\overrightarrow a ,\,\overrightarrow b $and $\overrightarrow c $ satisfy the relation $\overrightarrow a \,.\,\overrightarrow b = 0$ and $\overrightarrow a \,.\,\overrightarrow c = 0.$ The vector $\overrightarrow a $ is parallel to
A particle moves in the $x-y$ plane under the action of a force $\overrightarrow F $ such that the value of its linear momentum $(\overrightarrow P )$ at anytime t is ${P_x} = 2\cos t,\,{p_y} = 2\sin t.$ The angle $\theta $between $\overrightarrow F $ and $\overrightarrow P $ at a given time $t$. will be $\theta =$ ........... $^o$
If $\overrightarrow P .\overrightarrow Q = PQ,$ then angle between $\overrightarrow P $and $\overrightarrow Q $ is ....... $^o$
$\vec A$ and $\vec B$ are two vectors and $\theta$ is the angle between them, if $|\vec A \times \vec B|=\sqrt 3(\vec A \cdot \vec B) $ the value of $\theta$ is ......... $^o$